117 research outputs found

    Uncoupling of sexual reproduction from homologous recombination in homozygous Oenothera species

    Get PDF
    Salient features of the first meiotic division are independent segregation of chromosomes and homologous recombination (HR). In non-sexually reproducing, homozygous species studied to date HR is absent. In this study, we constructed the first linkage maps of homozygous, bivalent-forming Oenothera species and provide evidence that HR was exclusively confined to the chromosome ends of all linkage groups in our population. Co-segregation of complementary DNA-based markers with the major group of AFLP markers indicates that HR has only a minor role in generating genetic diversity of this taxon despite its efficient adaptation capability. Uneven chromosome condensation during meiosis in Oenothera may account for restriction of HR. The use of plants with ancient chromosomal arm arrangement demonstrates that limitation of HR occurred before and independent from species hybridizations and reciprocal translocations of chromosome arms—a phenomenon, which is widespread in the genus. We propose that consecutive loss of HR favored the evolution of reciprocal translocations, beneficial superlinkage groups and ultimately permanent translocation heterozygosity

    A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus

    Get PDF
    The innate immune system is critical in the response to infection by pathogens and it is activated by pattern recognition receptors (PRRs) binding to pathogen associated molecular patterns (PAMPs). During viral infection, the direct recognition of the viral nucleic acids, such as the genomes of DNA viruses, is very important for activation of innate immunity. Recently, DNA-dependent protein kinase (DNA-PK), a heterotrimeric complex consisting of the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs was identified as a cytoplasmic PRR for DNA that is important for the innate immune response to intracellular DNA and DNA virus infection. Here we show that vaccinia virus (VACV) has evolved to inhibit this function of DNA-PK by expression of a highly conserved protein called C16, which was known to contribute to virulence but by an unknown mechanism. Data presented show that C16 binds directly to the Ku heterodimer and thereby inhibits the innate immune response to DNA in fibroblasts, characterised by the decreased production of cytokines and chemokines. Mechanistically, C16 acts by blocking DNA-PK binding to DNA, which correlates with reduced DNA-PK-dependent DNA sensing. The C-terminal region of C16 is sufficient for binding Ku and this activity is conserved in the variola virus (VARV) orthologue of C16. In contrast, deletion of 5 amino acids in this domain is enough to knockout this function from the attenuated vaccine strain modified vaccinia virus Ankara (MVA). In vivo a VACV mutant lacking C16 induced higher levels of cytokines and chemokines early after infection compared to control viruses, confirming the role of this virulence factor in attenuating the innate immune response. Overall this study describes the inhibition of DNA-PK-dependent DNA sensing by a poxvirus protein, adding to the evidence that DNA-PK is a critical component of innate immunity to DNA viruses

    The Use of Experimental Structures to Model Protein Dynamics

    Get PDF
    The number of solved protein structures submitted in the Protein Data Bank (PDB) has increased dramatically in recent years. For some specific proteins, this number is very high—for example, there are over 550 solved structures for HIV-1 protease, one protein that is essential for the life cycle of human immunodeficiency virus (HIV) which causes acquired immunodeficiency syndrome (AIDS) in humans. The large number of structures for the same protein and its variants include a sample of different conformational states of the protein. A rich set of structures solved experimentally for the same protein has information buried within the dataset that can explain the functional dynamics and structural mechanism of the protein. To extract the dynamics information and functional mechanism from the experimental structures, this chapter focuses on two methods—Principal Component Analysis (PCA) and Elastic Network Models (ENM). PCA is a widely used statistical dimensionality reduction technique to classify and visualize high-dimensional data. On the other hand, ENMs are well-established simple biophysical method for modeling the functionally important global motions of proteins. This chapter covers the basics of these two. Moreover, an improved ENM version that utilizes the variations found within a given set of structures for a protein is described. As a practical example, we have extracted the functional dynamics and mechanism of HIV-1 protease dimeric structure by using a set of 329 PDB structures of this protein. We have described, step by step, how to select a set of protein structures, how to extract the needed information from the PDB files for PCA, how to extract the dynamics information using PCA, how to calculate ENM modes, how to measure the congruency between the dynamics computed from the principal components (PCs) and the ENM modes, and how to compute entropies using the PCs. We provide the computer programs or references to software tools to accomplish each step and show how to use these programs and tools. We also include computer programs to generate movies based on PCs and ENM modes and describe how to visualize them

    Contrasting effects of long term versus short-term nitrogen addition on photosynthesis and respiration in the Arctic

    Get PDF
    We examined the effects of short (<1–4 years) and long-term (22 years) nitrogen (N) and/or phosphorus (P) addition on the foliar CO2 exchange parameters of the Arctic species Betula nana and Eriophorum vaginatum in northern Alaska. Measured variables included: the carboxylation efficiency of Rubisco (Vcmax), electron transport capacity (Jmax), dark respiration (Rd), chlorophyll a and b content (Chl), and total foliar N (N). For both B. nana and E. vaginatum, foliar N increased by 20–50 % as a consequence of 1–22 years of fertilisation, respectively, and for B. nana foliar N increase was consistent throughout the whole canopy. However, despite this large increase in foliar N, no significant changes in Vcmax and Jmax were observed. In contrast, Rd was significantly higher (>25 %) in both species after 22 years of N addition, but not in the shorter-term treatments. Surprisingly, Chl only increased in both species the first year of fertilisation (i.e. the first season of nutrients applied), but not in the longer-term treatments. These results imply that: (1) under current (low) N availability, these Arctic species either already optimize their photosynthetic capacity per leaf area, or are limited by other nutrients; (2) observed increases in Arctic NEE and GPP with increased nutrient availability are caused by structural changes like increased leaf area index, rather than increased foliar photosynthetic capacity and (3) short-term effects (1–4 years) of nutrient addition cannot always be extrapolated to a larger time scale, which emphasizes the importance of long-term ecological experiments

    Probabilistic downscaling of remote sensing data with applications for multi-scale biogeochemical flux modeling

    Get PDF
    Upscaling ecological information to larger scales in space and downscaling remote sensing observations or model simulations to finer scales remain grand challenges in Earth system science. Downscaling often involves inferring subgrid information from coarse-scale data, and such ill-posed problems are classically addressed using regularization. Here, we apply two-dimensional Tikhonov Regularization (2DTR) to simulate subgrid surface patterns for ecological applications. Specifically, we test the ability of 2DTR to simulate the spatial statistics of high-resolution (4 m) remote sensing observations of the normalized difference vegetation index (NDVI) in a tundra landscape. We find that the 2DTR approach as applied here can capture the major mode of spatial variability of the high-resolution information, but not multiple modes of spatial variability, and that the Lagrange multiplier (γ) used to impose the condition of smoothness across space is related to the range of the experimental semivariogram. We used observed and 2DTR-simulated maps of NDVI to estimate landscape-level leaf area index (LAI) and gross primary productivity (GPP). NDVI maps simulated using a γ value that approximates the range of observed NDVI result in a landscape-level GPP estimate that differs by ca 2% from those created using observed NDVI. Following findings that GPP per unit LAI is lower near vegetation patch edges, we simulated vegetation patch edges using multiple approaches and found that simulated GPP declined by up to 12% as a result. 2DTR can generate random landscapes rapidly and can be applied to disaggregate ecological information and compare of spatial observations against simulated landscapes

    A novel TLR3 inhibitor encoded by African swine fever virus (ASFV)

    Get PDF
    African swine fever virus (ASFV) encodes proteins that manipulate important host antiviral mechanisms. Bioinformatic analysis of the ASFV genome revealed ORF I329L, a gene without any previous functional characterization as a possible inhibitor of TLR signaling. We demonstrate that ORF I329L encodes a highly glycosylated protein expressed in the cell membrane and on its surface. I329L also inhibited dsRNA-stimulated activation of NFκB and IRF3, two key players in innate immunity. Consistent with this, expression of I329L protein also inhibited the activation of interferon-β and CCL5. Finally, overexpression of TRIF reversed I329L-mediated inhibition of both NFκB and IRF3 activation. Our results suggest that TRIF, a key MyD88-independent adaptor molecule, is a possible target of this viral host modulation gene. The demonstration of an ASFV host evasion molecule inhibiting TLR responses is consistent with the ability of this virus to infect vertebrate and invertebrate hosts, both of which deploy innate immunity controlled by conserved TLR systems

    Twenty-Two Years of Warming, Fertilisation and Shading of Subarctic Heath Shrubs Promote Secondary Growth and Plasticity but Not Primary Growth

    Get PDF
    Most manipulation experiments simulating global change in tundra were short-term or did not measure plant growth directly. Here, we assessed the growth of three shrubs (Cassiope tetragona, Empetrum hermaphroditum and Betula nana) at a subarctic heath in Abisko (Northern Sweden) after 22 years of warming (passive greenhouses), fertilisation (nutrients addition) and shading (hessian fabric), and compare this to observations from the first decade of treatment. We assessed the growth rate of current-year leaves and apical stem (primary growth) and cambial growth (secondary growth), and integrated growth rates with morphological measurements and species coverage. Primary- and total growth of Cassiope and Empetrum were unaffected by manipulations, whereas growth was substantially reduced under fertilisation and shading (but not warming) for Betula. Overall, shrub height and length tended to increase under fertilisation and warming, whereas branching increased mostly in shaded Cassiope. Morphological changes were coupled to increased secondary growth under fertilisation. The species coverage showed a remarkable increase in graminoids in fertilised plots. Shrub response to fertilisation was positive in the short-term but changed over time, likely because of an increased competition with graminoids. More erected postures and large, canopies (requiring enhanced secondary growth for stem reinforcement) likely compensated for the increased light competition in Empetrum and Cassiope but did not avoid growth reduction in the shade intolerant Betula. The impact of warming and shading on shrub growth was more conservative. The lack of growth enhancement under warming suggests the absence of long-term acclimation for processes limiting biomass production. The lack of negative effects of shading on Cassiope was linked to morphological changes increasing the photosynthetic surface. Overall, tundra shrubs showed developmental plasticity over the longer term. However, such plasticity was associated clearly with growth rate trends only in fertilised plots

    Phosphorylation of p130Cas initiates Rac activation and membrane ruffling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non-receptor tyrosine kinases (NTKs) regulate physiological processes such as cell migration, differentiation, proliferation, and survival by interacting with and phosphorylating a large number of substrates simultaneously. This makes it difficult to attribute a particular biological effect to the phosphorylation of a particular substrate. We developed the Functional Interaction Trap (FIT) method to phosphorylate specifically a single substrate of choice in living cells, thereby allowing the biological effect(s) of that phosphorylation to be assessed. In this study we have used FIT to investigate the effects of specific phosphorylation of p130Cas, a protein implicated in cell migration. We have also used this approach to address a controversy regarding whether it is Src family kinases or focal adhesion kinase (FAK) that phosphorylates p130Cas in the trimolecular Src-FAK-p130Cas complex.</p> <p>Results</p> <p>We show here that SYF cells (mouse fibroblasts lacking the NTKs Src, Yes and Fyn) exhibit a low level of basal tyrosine phosphorylation at focal adhesions. FIT-mediated tyrosine phosphorylation of NTK substrates p130Cas, paxillin and FAK and cortactin was observed at focal adhesions, while FIT-mediated phosphorylation of cortactin was also seen at the cell periphery. Phosphorylation of p130Cas in SYF cells led to activation of Rac1 and increased membrane ruffling and lamellipodium formation, events associated with cell migration. We also found that the kinase activity of Src and not FAK is essential for phosphorylation of p130Cas when the three proteins exist as a complex in focal adhesions.</p> <p>Conclusion</p> <p>These results demonstrate that tyrosine phosphorylation of p130Cas is sufficient for its localization to focal adhesions and for activation of downstream signaling events associated with cell migration. FIT provides a valuable tool to evaluate the contribution of individual components of the response to signals with multiple outputs, such as activation of NTKs.</p

    A poxvirus Bcl-2-like gene family involved in regulation of host immune response: sequence similarity and evolutionary history

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Poxviruses evade the immune system of the host through the action of viral encoded inhibitors that block various signalling pathways. The exact number of viral inhibitors is not yet known. Several members of the vaccinia virus A46 and N1 families, with a Bcl-2-like structure, are involved in the regulation of the host innate immune response where they act non-redundantly at different levels of the Toll-like receptor signalling pathway. N1 also maintains an anti-apoptotic effect by acting similarly to cellular Bcl-2 proteins. Whether there are related families that could have similar functions is the main subject of this investigation.</p> <p>Results</p> <p>We describe the sequence similarity existing among poxvirus A46, N1, N2 and C1 protein families, which share a common domain of approximately 110-140 amino acids at their C-termini that spans the entire N1 sequence. Secondary structure and fold recognition predictions suggest that this domain presents an all-alpha-helical fold compatible with the Bcl-2-like structures of vaccinia virus proteins N1, A52, B15 and K7. We propose that these protein families should be merged into a single one. We describe the phylogenetic distribution of this family and reconstruct its evolutionary history, which indicates an extensive gene gain in ancestral viruses and a further stabilization of its gene content.</p> <p>Conclusions</p> <p>Based on the sequence/structure similarity, we propose that other members with unknown function, like vaccinia virus N2, C1, C6 and C16/B22, might have a similar role in the suppression of host immune response as A46, A52, B15 and K7, by antagonizing at different levels with the TLR signalling pathways.</p

    Climate and species affect fine root production with long-term fertilization in acidic tussock tundra near Toolik Lake, Alaska

    Get PDF
    Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Oecologia 153 (2007): 643-652, doi:10.1007/s00442-007-0753-8.Long-term fertilization of acidic tussock tundra has led to changes in plant species composition, increases in aboveground production and biomass and substantial losses of soil organic carbon (SOC). Root litter is an important input to SOC pools, though little is known about fine root demography in tussock tundra. In this study, we examined the response of fine root production and live standing fine root biomass to short- and long-term fertilization, as changes in fine root demography may contribute to observed declines in SOC. Live standing fine root biomass increased with long-term fertilization, while fine root production declined, reflecting replacement of the annual fine root system of Eriophorum vaginatum, with the long-lived fine roots of Betula nana. Fine root production increased in fertilized plots during an unusually warm growing season, but remained unchanged in control plots, consistent with observations that B. nana shows a positive response to climate warming. Calculations based on a few simple assumptions suggest changes in fine root demography with long-term fertilization and species replacement could account for between 20 and 39% of observed declines in SOC stocks.This project was supported by National Science Foundation research grants 9810222, 9911681, 0221606 and 0528748
    corecore